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ELECTROMAGNETIC RADIATION FROM A VIBRATING
QUARTZ PLATE

R. D. MINDLIN

Department of Civil Engineering, Columbia University, New York

Abstract-The linear equations of piezoelectromagnetism are solved for the case of thickness-shear vibrations
of a quartz plate. For an AT-cut plate vibrating near resonance, the radiation from each face is about 25 p.W/cm 2

for a shear strain of 10- 5.

1. INTRODUCTION

THE problem ofelectromagnetic radiation from a quartz plate vibrating in a predominantly
thickness-shear mode was studied by Tiersten [1] who concluded that there is no radiation
in the case of a "trapped energy" [2] mode. In the present paper, an exact solution of the
linear equations of piezoelectromagnetism is obtained for a mode of vibration favorable to
radiation: thickness-shear, independent of the coordinates in the plane of the plate. A
simple formula is obtained for the power radiated, per unit of area, from each face of the
plate:

where )(33 is a dielectric constant, C66 is a shear stiffness, So is the maximum shear strain, p
is the mass density and c is the velocity of light in vacuo. For the AT-cut of quartz, the
radiation is about 25/IWjcm2 for a shear strain of 10- 5.

2. EQUATIONS AND BOUNDARY CONDITIONS

The field equations of piezoelectromagnetism in a dielectric comprise the stress equations
of motion

and the equations of the electromagnetic field:

(1)

Bi,i = 0, Di,j = O. (2)

In these equations, u is the mechanical displacement, E is the Maxwell electric self-field, B is
the magnetic flux density, p is the mass density, 11-0 is the magnetic permeability of a vacuum
and Bijk is the unit alternating tensor. For the rotated- Y-cuts of quartz [3], the components
of stress, 'Iij, and the components of electric displacement, D j , are expressed, in the linear
theory, in terms of the components of strain,

S.. = 11
2

1 u· ·+u· .)l] 2\ ).l l,j ,
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and the components of the electric field, E j , according to

Til = C II SII +C12S22+CI3S33+2cI4S23-eIIEI'

Tn = C21 S 11 +CnS22+C23S33+2c24S23-e12EI,

T 33 = C 31 S I1 +C32Sn+C33S33+2c34S23-eI3EI,

T 23 = C4I S11 +C42Sn+C43S33+2c44S23-eI4EI'

T 31 = 2C55 S 31 +2C56 S 12 -e25 E 2 -e35 E 3 ,

T12 = 2C56S31 +2C66S12 -e26 E 2 -e36 E 3'

D 1 = e11S11+eI2Sn+e13S33+2eI4S14+CIIEI,

D2 = 2e25 S 31 +2e26 S 12 +Cn E 2 +C23 E 3'

D 3 = 2e35 S 31 +2e36S12+C23E2+C33E3'

(4)

In (4), the cpq are the elastic stiffnesses at constant electric field, the cij are the dielectric per­
mittivities and the ejp are the piezoelectric stress constants.

We shall consider simple x I-thickness-shear modes in an infinite plate bounded by
planes X2 = ±b which separate the plate from a vacuum. In that case, in Ix21:'S: b,

E3 = E3(X 2 , t),
(5)

and consequently equations (1H4) reduce to

T12 .2 = pii l ,

E 3•2 = -B I , B I •2 = -/1oD3 ,

(6)

(7)

(8)

T I2 = 2C66S12-e26E2-e36E3,

D2 = 2e26 S 12 +C22 E 2 +C23 E 3,

D 3 = 2e36S12+C23E2+C33E3'

(9)

The remaining equations are either satisfied identically or are not coupled with (6H9).
The latter may be condensed, finally, to the three equations

C66U I.2 -e26E2.2 -e36E3.2 = pii l ,

e 26u I .2 +C22E2 +c23E3 = 0,

e36ii 1,2 +C23£2 +C33£3 = /101E 3 .22 ·

(10)

Outside the plate, UI = E 2 = 0, E 3 ...... E~, e36 = C23 = 0 and C33 ...... co' the permittivity
of a vacuum. Equations (10) then reduce to

(11 )
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For the mechanical boundary conditions on x 2 = ±b, we shall specify oscillating
tractions ni Iii' where n is the unit outward normal. The electromagnetic boundary condi­
tions require continuity of

across X 2 = ±b. In view of (5), the boundary conditions reduce to

Tt2 = Tcos wt, (12)

on X2 = ± b, where T is the amplitude of the prescribed sur:face traction.

3. SOLUTION

Anticipating, from the forms of equations 00-12), that there will be two wave numbers
and two phase components, we take

r = 1,2,

r = 1,2,

r = 1,2

(13)

(14)

where c( = [;0 t flo t) is the velocity of electromagnetic waves in a vacuum, '70 = wlc and the
upper and lower signs are for X 2 ~ band X2 $; b, respectively.

Upon substitution of (13) in (10), there results

From these equations follow the amplitude ratios

f3 = B, = (C66 +e26e361[;23)tf. - pw
2

'A, '7,(e26 - e36[;22/[;23) ,

C, [;22 [pw2 - (C66 +d61[;22)'7;]
y=-=
'A, '7,[;23(e26 - e36622/[;23)

(15)

(16)

in which the '7, are the two positive roots of the equation obtained by setting the determinant
of the coefficients of A" B, and C" in (15), equal to zero:

(17)
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where

and
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(18)

(19)

i.e. fj is the velocity of the x l-thickness-shear wave including the electric, but not the magnetic,
influence and c is the velocity of an electromagnetic wave, in the quartz plate, with wave
normal and electric vector in the X2 and X 3 directions, respectively.

The functions (13) may now be written as

r = 1,2,

r = 1,2,

r = 1,2,

(20)

where fl, and y, are given by (16) and '1, by the two positive roots of (17).
Substitution of (20) in the three boundary conditions (12), yields the following six

equations on the six constants A~, A~, C~, C~:

alA~+a2A; = 0,

b2A'{ + b2A~ + C~ = 0,

cIA~ +c2A; +'1oC~ = 0,

(21)

where

r = 1,2,

C~ = Co sin 15,
(22)

r = 1,2,

r = 1,2.
(23)

The solution of the six equations (21) is

A'l = (b2'1~l1ab-c2I1ca)T/I1, A~ = a2'1ol1bcT/I1,

A~ = -(bl'1~l1ab-cll1ca)T/I1, A~ = -al'1ol1bcT/I1,

C~ = -l1bcl1ca T /11, C~ = '10l1abl1bc T /11,

where

(24)

I1bc = b1c2 -b2 cl ,

11 = '1~I1;b + l1~a'
(25)

This completes the formal solution of the problem.
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4. POWER RADIATED
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(26)

Since the only power loss from the vibrating plate is through electromagnetic radiation,
the radiated power must be equal to the power input of the surface traction. Per unit area
of each face of the plate, this is T12U1 , on X2 = ±b. The radiated power, per unit area ofeach
face, averaged over the period ,( = 2n/w), is

p = ,-1 it (Tlludx2=bdt = twTL.A~sin'7rb.
o r

A simple formula for P may be found after taking into account the magnitudes of the terms
involved in '7r and A~.

For the AT-cut of quartz [3], the constants c, e and t:, appearing in (16), as calculated by
Syke's formulae [4] from Bechmann's [51 values of the principalconstants, are

C66 = 29·013 X 1010 dyn/cm2

e26 = -9-490 x 10- 6 C/cm2

e36 = 6·707 x 10- 6 C/cm2

t:22 = 39·816 X 10- 21 C 2/dyn cm2

t:33 = 4Q·424 x 10- 21 C2/dyncm2

t:23 = 0·8678 x 10- 21 C2/dyn cm2
.

Also,

p = 2.6485 g/cm3

D= 3·322 X 105 em/sec

t:o = 8·854 X 10- 21 C2/dyn cm2

c = 2·998 X 1010 em/sec.

Accordingly, to a close approximation,

(27)

and

'7i = (w2/D2)(1- D2/c2
), '7~ = W

2/C2
• (28)

Thus, to the second degree in D/c, i.e. to 10 - 10, the wave number ofthe essentially mechanical
wave is slightly less than if the electromagnetic effect is neglected and the wave number of
the electromagnetic wave is not influenced by the elasticity. From (28), it is apparent that
the percent increase in resonance frequencies due to the electromagnetic effect is only
about 6x 10- 7

•

We shall take the forcing frequency, w, to be a resonance frequency as calculated in the
absence of the electromagnetic field:

Then,

w = nnv/2b, n odd. (29)

'70 = nnv/2bc, '72 ~ nnv/2bc (30)
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cos '12b ~ 1,

sin '12b :::::: nnv/2c.
(31 )

The amplitude of the strain in the middle plane of the plate is

So = IU1,2IX2;O ~ A'~'11 ~ a2'1o'11 Abc T /A

and P is, approximately,

Now,

A ~ A~a :::::: p4w8(DG22/cG23)2(2b/nn)2/e~6(I-e36G22/e26G23)2.

Abc ~ p2w4(D/c)(G22/G23)2(2b/n1t)/e~6(1-e36G22/e26G23)2,

a2 ~ PW2/'12' pw2 ~ c66(nn/2b)2.

Consequently we have, finally,

(32)

(33)

(34)

where X 3 3 = G33/GO' as the simple formula for the power radiated, per unit area, from each
face of the plate. Employing the numerical values of the constants, we have

P ~ 25 X 104 S5 W/cm2
• (35)

Hence, for a strain of 10- 5, the power radiated is about 25IlW/cm2.
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A6cTpaKT-PewaIOTCli JIHHeAHble ypaBHeHHlI nbe30:meKTpoMarHeTH3Ma .D;JIli CJIy'lali C.D;BHroBbIX KOJIe6aHHA

110 TOJIUlHHe .D;JIli I1JIaCTHHKH H3 KBapua. ,L:{JIli I1JIaCTHHKH cpe3a AT, KOJIe6aIOUleAcli 6JIH3H pe30HaHca,

H3JIy'leHHe H3 KalK.D;oA CTOpOHbI lIBJIlIeTClI npH6JIH3HTeJIbHO 25 MKBT/CM2 JlJIlI Jle$opMaUHH C.D;BHra 10 - 5.


